“Anti-Bayesian” flat and hierarchical clustering using symmetric quantiloids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Hierarchical Clustering using Bayesian Nonparametrics

A widely-used class of algorithms to understand data is hierarchical clustering, but it is often difficult to reconcile the results of these algorithms with hierarchies constructed by humans. Interaction, or querying humans for constraints on the data, is a popular solution for addressing this discrepancy. In this paper, we propose using leave-one-out interactions to achieve better hierarchies ...

متن کامل

Bayesian Hierarchical Cross-Clustering

Most clustering algorithms assume that all dimensions of the data can be described by a single structure. Cross-clustering (or multiview clustering) allows multiple structures, each applying to a subset of the dimensions. We present a novel approach to crossclustering, based on approximating the solution to a Cross Dirichlet Process mixture (CDPM) model [Shafto et al., 2006, Mansinghka et al., ...

متن کامل

Interactive Bayesian Hierarchical Clustering

Clustering is a powerful tool in data analysis, but it is often difficult to find a grouping that aligns with a user’s needs. To address this, several methods incorporate constraints obtained from users into clustering algorithms, but unfortunately do not apply to hierarchical clustering. We design an interactive Bayesian algorithm that incorporates user interaction into hierarchical clustering...

متن کامل

Dynamic Networks from Hierarchical Bayesian Graph Clustering

Biological networks change dynamically as protein components are synthesized and degraded. Understanding the time-dependence and, in a multicellular organism, tissue-dependence of a network leads to insight beyond a view that collapses time-varying interactions into a single static map. Conventional algorithms are limited to analyzing evolving networks by reducing them to a series of unrelated ...

متن کامل

Randomized Algorithms for Fast Bayesian Hierarchical Clustering

We present two new algorithms for fast Bayesian Hierarchical Clustering on large data sets. Bayesian Hierarchical Clustering (BHC) [1] is a method for agglomerative hierarchical clustering based on evaluating marginal likelihoods of a probabilistic model. BHC has several advantages over traditional distancebased agglomerative clustering algorithms. It defines a probabilistic model of the data a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2017

ISSN: 0020-0255

DOI: 10.1016/j.ins.2017.08.017